Baccalauréat S Antilles-Guyane 18 juin 2013

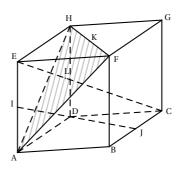
EXERCICE 1 Commun à tous les candidats

5 points

 $\begin{array}{l} \textbf{Description de la figure dans l'espace muni} \\ \textbf{du repère orthonorm\'e}\left(A \ ; \overrightarrow{AB} \ ; \overrightarrow{AD} \ ; \overrightarrow{AE}\right) \textbf{:} \end{array}$

ABCDEFGH désigne un cube de côté 1.
On appelle \mathscr{D} le plan (AFH).
Le point I est le milieu du segment [AE],
le point J est le milieu du segment [BC],
le point K est le milieu du segment [HF],

le point J est le milieu du segment [BC], le point K est le milieu du segment [HF], le point L est le point d'intersection de la droite (EC) et du plan \mathcal{P} .



Ceci est un questionnaire à choix multiples (QCM). Pour chacune des questions, une seule des quatre affirmations est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée. Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse ne rapporte aucun point.

- 1. a. Les droites (IJ) et (EC) sont strictement parallèles.
 - **b.** Les droites (IJ) et (EC) sont non coplanaires.
 - c. Les droites (IJ) et (EC) sont sécantes.
 - **d.** Les droites (IJ) et (EC) sont confondues.
- **2. a.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 0.
 - **b.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à (-1).
 - **c.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 1.
 - **d.** Le produit scalaire $\overrightarrow{AF} \cdot \overrightarrow{BG}$ est égal à 2.
- **3.** Dans le repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$:
 - **a.** Le plan \mathcal{P} a pour équation cartésienne : x + y + z 1 = 0.
 - **b.** Le plan \mathcal{P} a pour équation cartésienne : x y + z = 0.
 - **c.** Le plan \mathcal{P} a pour équation cartésienne : -x + y + z = 0.
 - **d.** Le plan \mathscr{P} a pour équation cartésienne : x + y z = 0.
- **4. a.** \overrightarrow{EG} est un vecteur normal au plan \mathscr{P} .
 - **b.** \overrightarrow{EL} est un vecteur normal au plan \mathscr{P} .
 - **c.** \overrightarrow{IJ} est un vecteur normal au plan \mathscr{P} .
 - **d.** \overrightarrow{DI} est un vecteur normal au plan \mathscr{P} .
- 5. **a.** $\overrightarrow{AL} = \frac{1}{2}\overrightarrow{AH} \frac{1}{2}\overrightarrow{AF}$.
 - **b.** $\overrightarrow{AL} = \frac{1}{3}\overrightarrow{AK}$.
 - c. $\overrightarrow{ID} = \frac{1}{2}\overrightarrow{IJ}$.
 - **d.** $\overrightarrow{AL} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE}$.

EXERCICE 2 5 points

Commun à tous les candidats

Partie A

Soient n un entier naturel, p un nombre réel compris entre 0 et 1, et X_n une variable aléatoire suivant une loi binomiale de paramètres n et p. On note $F_n = \frac{X_n}{n}$ et f une valeur prise par F_n . On rappelle que, pour n assez grand, l'intervalle $\left[p - \frac{1}{\sqrt{n}}; p + \frac{1}{\sqrt{n}}\right]$ contient la fréquence f avec une probabilité au moins égale à 0,95.

En déduire que l'intervalle $\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right]$ contient p avec une probabilité au moins égale à 0,95.

Partie B

On cherche à étudier le nombre d'étudiants connaissant la signification du sigle URSSAF. Pour cela, on les interroge en proposant un questionnaire à choix multiples. Chaque étudiant doit choisir parmi trois réponses possibles, notées A, B et C, la bonne réponse étant la A.

On note r la probabilité pour qu'un étudiant connaisse la bonne réponse. Tout étudiant connaissant la bonne réponse répond A, sinon il répond au hasard (de façon équiprobable).

- 1. On interroge un étudiant au hasard. On note :
 - A l'événement « l'étudiant répond A »,
 - B l'événement « l'étudiant répond B »,
 - C l'événement « l'étudiant répond C »,
 - R l'événement « l'étudiant connait la réponse »,
 - R l'événement contraire de R.
 - a. Traduire cette situation à l'aide d'un arbre de probabilité.
 - **b.** Montrer que la probabilité de l'événement A est $P(A) = \frac{1}{3}(1+2r)$.
 - **c.** Exprimer en fonction de *r* la probabilité qu'une personne ayant choisie A connaisse la bonne réponse.
- **2.** Pour estimer *r*, on interroge 400 personnes et on note X la variable aléatoire comptant le nombre de bonnes réponses. On admettra qu'interroger au hasard 400 étudiants revient à effectuer un tirage avec remise de 400 étudiants dans l'ensemble de tous les étudiants.
 - **a.** Donner la loi de X et ses paramètres n et p en fonction de r.
 - **b.** Dans un premier sondage, on constate que 240 étudiants répondent A, parmi les 400 interrogés.

Donner un intervalle de confiance au seuil de 95 % de l'estimation de p. En déduire un intervalle de confiance au seuil de 95 % de r.

- **c.** Dans la suite, on suppose que r = 0.4. Compte-tenu du grand nombre d'étudiants, on considérera que X suit une loi normale.
 - i. Donner les paramètres de cette loi normale.
 - ii. Donner une valeur approchée de $P(X \le 250)$ à 10^{-2} près. On pourra s'aider de la table en annexe 1, qui donne une valeur approchée de $P(X \le t)$ où X est la variable aléatoire de la question **2.c**.

EXERCICE 3 5 points

Commun à tous les candidats

Dans tout ce qui suit, m désigne un nombre réel quelconque.

Partie A

Soit f la fonction définie et dérivable sur l'ensemble des nombres réels $\mathbb R$ telle que :

$$f(x) = (x+1)e^{x}$$
.

- **1.** Calculer la limite de f en +? et -?.
- **2.** On note f' la fonction dérivée de la fonction f sur \mathbb{R} . Démontrer que pour tout réel x, $f'(x) = (x+2)e^x$.
- **3.** Dresser le tableau de variation de f sur \mathbb{R} .

Partie B

On définie la fonction g_m sur \mathbb{R} par :

$$g_m(x) = x + 1 - me^{-x}$$

et on note \mathscr{C}_m la courbe de la fonction g_m dans un repère $\left(0, \overrightarrow{\iota}, \overrightarrow{\jmath}\right)$ du plan.

- **1. a.** Démontrer que $g_m(x) = 0$ si et seulement si f(x) = m.
 - **b.** Déduire de la partie A, sans justification, le nombre de points d'intersection de la courbe \mathscr{C}_m avec l'axe des abscisses en fonction du réel m.
- **2.** On a représenté en annexe 2 les courbes \mathcal{C}_0 , \mathcal{C}_e , et \mathcal{C}_{-e} (obtenues en prenant respectivement pour m les valeurs 0, e et -e). Identifier chacune de ces courbes sur la figure de l'annexe en justifiant.
- **3.** Étudier la position de la courbe \mathscr{C}_m par rapport à la droite \mathscr{D} d'équation y = x + 1 suivant les valeurs du réel m.
- **4. a.** On appelle D_2 la partie du plan comprise entre les courbes \mathscr{C}_e , \mathscr{C}_{-e} , l'axe (Oy) et la droite x = 2. Hachurer D_2 sur l'annexe 2.
 - **b.** Dans cette question, a désigne un réel positif, D_a la partie du plan comprise entre \mathscr{C}_e , \mathscr{C}_{-e} , l'axe (Oy) et la droite Δ_a d'équation x = a. On désigne par $\mathscr{A}(a)$ l'aire de cette partie du plan, exprimée en unités d'aire. Démontrer que pour tout réel a positif : $\mathscr{A}(a) = 2e 2e^{1-a}$. En déduire la limite de $\mathscr{A}(a)$ quand a tend vers +?.

EXERCICE 4 5 points

Commun ayant suivi l'enseignement de spécialité

On définit les suite (u_n) et (v_n) sur l'ensemble $\mathbb N$ des entiers naturels par :

$$u_0 = 0$$
; $v_0 = 1$, et
$$\begin{cases} u_{n+1} = \frac{u_n + v_n}{2} \\ v_{n+1} = \frac{u_n + 2v_n}{3} \end{cases}$$

Le but de cet exercice est d'étudier la convergence des suites (u_n) et (v_n) .

- **1.** Calculer u_1 et v_1 .
- 2. On considère l'algorithme suivant :

Variables: u, v et w des nombres réels

N et k des nombres entiers

Initialisation: u prend la valeur 0 v prend la valeur 1

Début de l'algorithme

Entrer la valeur de N

Pour k variant de 1 à N w prend la valeur u u prend la valeur $\frac{w+v}{2}$ v prend la valeur $\frac{w+v}{3}$ Fin du Pour

Afficher uAfficher vFin de l'algorithme

a. On exécute cet algorithme en saisissant N = 2. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme.

k	w	и	υ
1			
2			

- **b.** Pour un nombre N donné, à quoi correspondent les valeurs affichées par l'algorithme par rapport à la situation étudiée dans cet exercice?
- **3.** Pour tout entier naturel *n* on définit le vecteur colonne X_n par $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ et la matrice

A par A =
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
.

- **a.** Vérifier que, pour tout entier naturel n, $X_{n+1} = AX_n$.
- **b.** Démontrer par récurrence que $X_n = A^n X_0$ pour tout entier naturel n.
- **4.** On définit les matrices P, P' et B par P = $\begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix}$, P' = $\begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix}$ et B = $\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{6} \end{pmatrix}$.
 - **a.** Calculer le produit PP'. On admet que P'BP = A.

Démontrer par récurrence que pour tout entier naturel n, $A^n = P'B^nP$.

- **b.** On admet que pour tout entier naturel n, $B^n = \begin{pmatrix} 1 & 0 \\ 0 & \left(\frac{1}{6}\right)^n \end{pmatrix}$. En déduire l'expression de la matrice A^n en fonction de n.
- 5. **a.** Montrer que $X_n = \left(\frac{\frac{3}{5} \frac{3}{5}\left(\frac{1}{6}\right)^n}{\frac{3}{5} + \frac{2}{5}\left(\frac{1}{6}\right)^n}\right)$ pour tout entier naturel n. En déduire les expressions de u_n et v_n en fonction de n.
 - **b.** Déterminer alors les limites des suites (u_n) et (v_n) .

EXERCICE 4 5 points

Commun n'ayant pas suivi l'enseignement de spécialité

On considère la suite (z_n) à termes complexes définie par $z_0 = 1 + i$ et, pour tout entier naturel n, par

$$z_{n+1} = \frac{z_n + |z_n|}{3}.$$

Pour tout entier naturel n, on pose : $z_n = a_n + ib_n$, où a_n est la partie réelle de z_n et b_n est la partie imaginaire de z_n .

Le but de cet exercice est d'étudier la convergence des suites (a_n) et (b_n) .

Partie A

1. Donner a_0 et b_0 .

2. Calculer z_1 , puis en déduire que $a_1 = \frac{1+\sqrt{2}}{3}$ et $b_1 = \frac{1}{3}$.

3. On considère l'algorithme suivant :

Variables: A et B des nombres réels K et N des nombres entiers Initialisation: Affecter à A la valeur 1 Affecter à B la valeur 1

Traitement:

Entrer la valeur de N

Pour K variant de 1 à N

Affecter à B la valeur
$$\frac{A + \sqrt{A^2 + B^2}}{3}$$
Affecter à B la valeur $\frac{B}{3}$

FinPour Afficher A

a. On exécute cet algorithme en saisissant N = 2. Recopier et compléter le tableau ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme (on arrondira les valeurs calculées à 10^{-4} près).

K	A	В
1		
2		

b. Pour un nombre N donné, à quoi correspond la valeur affichée par l'algorithme par rapport à la situation étudiée dans cet exercice?

Partie B

- **1.** Pour tout entier naturel n, exprimer z_{n+1} en fonction de a_n et b_n . En déduire l'expression de a_{n+1} en fonction de a_n et b_n , et l'expression de b_{n+1} en fonction de a_n et b_n .
- **2.** Quelle est la nature de la suite (b_n) ? En déduire l'expression de b_n en fonction de n, et déterminer la limite de (b_n) .
- **a.** On rappelle que pour tous nombres complexes z et z':

$$|z + z'| \le |z| + |z'|$$
 (inégalité triangulaire).

Montrer que pour tout entier naturel n,

$$|z_{n+1}| \leqslant \frac{2|z_n|}{3}.$$

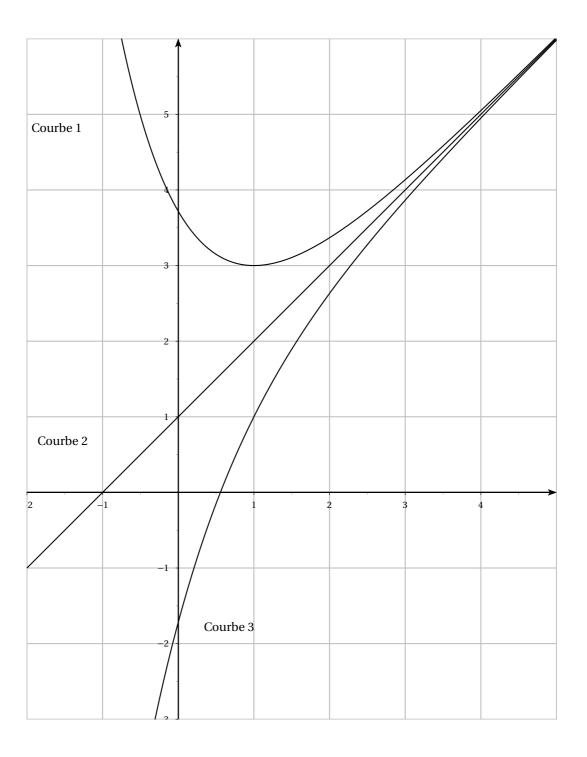
b. Pour tout entier naturel n, on pose $u_n = |z_n|$. Montrer par récurrence que, pour tout entier naturel n,

$$u_n \leqslant \left(\frac{2}{3}\right)^n \sqrt{2}.$$

En déduire que la suite (u_n) converge vers une limite que l'on déterminera.

c. Montrer que, pour tout entier naturel n, $|a_n| \le u_n$. En déduire que la suite (a_n) converge vers une limite que l'on déterminera.

Annexe 2
Exercice 3
À rendre avec la copie



Annexe 2
Exercice 3
À rendre avec la copie

E12				=LOI.NORMALE(\$A12+E\$1;240;RACINE(96);VRAI)							
	A	В	С	D	Е	F	G	Н	I	J	K
1	t	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
2	235	0,305	0,309	0,312	0,316	0,319	0,323	0,327	0,330	0,334	0,338
3	236	0,342	0,345	0,349	0,353	0,357	0,360	0,364	0,368	0,372	0,376
4	237	0,380	0,384	0,388	0,391	0,395	0,399	0,403	0,407	0,411	0,415
5	238	0,419	0,423	0,427	0,431	0,435	0,439	0,443	0,447	0,451	0,455
6	239	0,459	0,463	0,467	0,472	0,476	0,480	0,484	0,488	0,492	0,496
7	240	0,500	0,504	0,508	0,512	0,516	0,520	0,524	0,528	0,533	0,537
8	241	0,541	0,545	0,549	0,553	0,557	0,561	0,565	0,569	0,573	0,577
9	242	0,581	0,585	0,589	0,593	0,597	0,601	0,605	0,609	0,612	0,616
10	243	0,620	0,624	0,628	0,632	0,636	0,640	0,643	0,647	0,651	0,655
11	244	0,658	0,662	0,666	0,670	0,673	0,677	0,681	0,684	0,688	0,691
12	245	0,695	0,699	0,702	0,706	0,709	0,713	0,716	0,720	0,723	0,726
13	246	0,730	0,733	0,737	0,740	0,743	0,746	0,750	0,753	0,756	0,759
14	247	0,763	0,766	0,769	0,772	0,775	0,778	0,781	0,784	0,787	0,790
15	248	0,793	0,796	0,799	0,802	0,804	0,807	0,810	0,813	0,815	0,818
16	249	0,821	0,823	0,826	0,829	0,831	0,834	0,836	0,839	0,841	0,844
17	250	0,846	0,849	0,851	0,853	0,856	0,858	0,860	0,863	0,865	0,867
18	251	0,869	0,871	0,874	0,876	0,878	0,880	0,882	0,884	0,886	0,888
19	252	0,890	0,892	0,893	0,895	0,897	0,899	0,901	0,903	0,904	0,906
20	253	0,908	0,909	0,911	0,913	0,914	0,916	0,917	0,919	0,921	0,922
21	254	0,923	0,925	0,926	0,928	0,929	0,931	0,932	0,933	0,935	0,936
22	255	0,937	0,938	0,940	0,941	0,942	0,943	0,944	0,945	0,947	0,948
23	256	0,949	0,950	0,951	0,952	0,953	0,954	0,955	0,956	0,957	0,958
24	257	0,959	0,960	0,960	0,961	0,962	0,963	0,964	0,965	0,965	0,966
25	258	0,967	0,968	0,968	0,969	0,970	0,970	0,971	0,972	0,972	0,973
26	259	0,974	0,974	0,975	0,976	0,976	0,977	0,977	0,978	0,978	0,979
27	260	0,979	0,980	0,980	0,981	0,981	0,982	0,982	0,983	0,983	0,984

Extrait d'une feuille de calcul

Exemple d'utilisation : au croisement de la ligne 12 et de la colonne E le nombre 0,706 correspond à $P(X \le 245,3)$.